Supply Chain and Operations Decision Making

www.scodm.reapress.com

Sup. Chain Oper. Decis. Mak. Vol. 2, No. 2 (2025) 80-87.

Paper Type: Original Article

AI-IoT-Based Optimization Techniques for Smart City Waste Management

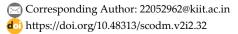
Aditva Tulsvan*

School of Computer Science Engineering, KIIT University, Bhubaneswar, India; 22052962@kiit.ac.in.

Citation:

Received: 12 October 2024	Tulsyan, A. (2025). AI-IoT-based optimization techniques for smart city
Revised: 16 December 2024	waste management. Supply chain and operations decision making, 2(2), 80-
Accepted: 08 March 2025	87.

Abstract


This research investigates the use of AI-IoT optimization methods in managing waste within smart cities. As urban populations increase, efficient waste management becomes vital for ensuring cleanliness, public health, and sustainability. The combination of Artificial Intelligence (AI) and the Internet of Things (IoT) offers innovative approaches to enhance the processes of waste collection, sorting, and disposal. This paper reviews existing applications of AI-IoT, outlines the challenges faced, and suggests solutions to improve system efficiency, decrease costs, and promote environmentally sustainable urban development. The goal of this study is to add to the expanding body of knowledge regarding sustainable waste management strategies in smart cities.

Keywords: Artificial intelligence, Internet of things, Waste management, Smart cities, Optimization, Sustainability.

1 | Introduction

Smart waste management is a cornerstone in building sustainable urban environments and ensures clean and livable cities. As urban populations grow, managing waste effectively has become increasingly challenging. The rise in urban density has led to a higher volume of waste, placing additional strain on traditional waste collection and disposal systems. These conventional systems often rely on fixed schedules and routes, which can be inefficient and expensive. As a result, waste management

Due to suboptimal route planning, agencies frequently face overflowing bins, missed pickups, and increased fuel consumption. These inefficiencies can lead to unsanitary conditions, impact public health, and contribute to environmental pollution.

To combat these challenges, integrating Artificial Intelligence (AI) and the Internet of Things (IoT) offers a transformative solution. AI enables predictive analytics to anticipate waste generation patterns, allowing cities to prepare for peak waste periods and dynamically adjust collection schedules. Machine learning algorithms, a subset of AI, can analyze historical data to identify trends and predict future waste volumes in specific areas, leading to better resource allocation and planning. On the other hand, IoT facilitates real-time data collection through interconnected devices and sensors. For example, smart bins equipped with IoT sensors can monitor waste container fill levels, temperature, and humidity, sending instant alerts when they require servicing. This data-driven approach ensures collection is based on need rather than fixed schedules, optimizing efficiency and reducing operational costs.

Furthermore, AI-IoT systems can significantly reduce the environmental impact of waste management. AI can optimize the routes of waste collection vehicles, minimizing fuel consumption and greenhouse gas emissions. This optimization lowers operational costs and aligns with sustainability goals, making urban centers greener and more environmentally friendly. Additionally, AI algorithms can assist in automating waste sorting processes, improving recycling rates, and reducing the amount of waste sent to landfills. Smart sorting systems can distinguish between different types of waste materials, making recycling more efficient and effective.

This paper delves into the impact of AI-IoT optimization techniques in waste management within smart cities. It explores how integrating these technologies can modernize traditional waste collection systems, streamline recycling processes, and contribute to the development of sustainable urban environments. By examining real-world implementations and theoretical models, this study aims to provide insights into AI-IoT-enhanced waste management solutions' benefits, challenges, and future possibilities. The ultimate goal is to illustrate how these advanced technologies can address the complexities of urban waste, making cities smarter, cleaner, and more sustainable for future generations.

2 | Literature Review

Previous studies have explored various aspects of waste management in urban areas, addressing the critical need for efficient and sustainable practices in response to growing populations and increasing waste generation. Some researchers have focused on implementing IoT networks to monitor waste levels in real-time. By utilizing smart sensors placed in waste bins, these systems provide valuable fill-level data, enabling municipalities to optimize collection schedules and reduce operational costs. For instance, IoT applications can alert waste management services when bins are nearing capacity, preventing overflow and enhancing cleanliness in public spaces.

On the other hand, other studies have delved into the role of AI in optimizing waste collection routes. AI can analyze historical waste generation data, traffic patterns, and environmental factors through advanced algorithms and machine learning techniques to develop efficient collection schedules. This streamlines operations and contributes to reducing greenhouse gas emissions by minimizing fuel consumption and time spent on the road.

Despite the advancements in these individual technologies, integrating AI and IoT for comprehensive waste management is still in its infancy. This section aims to review existing technologies, outlining their respective limitations and the gaps in current research. While IoT systems provide valuable data for decision-making, they often lack the analytical capabilities to draw actionable insights from the vast amounts of data collected. Similarly, while AI can optimize collection routes, it may not have real-time data to adapt to changing conditions, such as sudden increases in waste volume due to events or seasonal variations.

Furthermore, existing research often addresses the technological or operational aspects of waste. Management tends to overlook the interplay between these components. A holistic approach that combines AI and IoT can address these limitations, creating a more responsive and efficient waste management system. For example, integrating real-time IoT data into AI algorithms could enable dynamic route optimization, allowing

waste collection vehicles to adapt to actual conditions on the ground rather than relying solely on historical data.

This integration presents significant opportunities for innovation in urban waste management. By leveraging the capabilities of both AI and IoT, cities can develop smarter waste management solutions that are not only more efficient but also environmentally friendly. This section highlights the potential of AI-IoT integration, emphasizing the need for further research to explore frameworks, models, and strategies that can facilitate this convergence. Addressing these gaps can transform urban waste management, ultimately contributing to cleaner and more sustainable urban environments [1].

3 | Methodology

This study explores the transformative potential of merging AI and IoT technologies to advance urban waste management, addressing traditional methods' significant inefficiencies and limitations. By leveraging AI's strengths in predictive analytics, machine learning, and automation, alongside IoT's capabilities in real-time data gathering, monitoring, and seamless communication between devices, this research aims to develop a comprehensive, adaptive waste management framework. Integrating these technologies enables a system that can dynamically monitor waste levels, predict demand, and adjust waste collection schedules and routes, improving responsiveness to fluctuating waste volumes. Additionally, this framework facilitates resource allocation and maintenance scheduling, which collectively enhance operational efficiency, reduce costs, and minimize the ecological impact of waste management in densely populated urban environments. Through this AI-IoT synergy, the study provides a path toward a waste management system that is not only technologically advanced but also aligned with the principles of sustainability, efficiency, and urban resilience [2].

3.1 | AI-Driven Waste Generation Predictions

Central to this study are AI-driven algorithms designed to predict waste generation patterns by processing both historical data and real-time inputs. These algorithms analyze various influential factors—including population density, seasonal trends, local events, socio-economic indicators, and even weather conditions—to create accurate forecasts of waste volumes across various times and locations within an urban area. By identifying patterns and trends, the algorithms enable municipalities to make data-informed decisions regarding resource allocation, optimizing the deployment of waste collection vehicles and personnel to the areas most needed. This targeted, proactive approach reduces the risk of overfilled bins and related issues, such as unsightly public spaces, odors, and pest attraction. It minimizes unnecessary waste collection trips, reducing fuel consumption and operational costs. In addition, by ensuring waste collection aligns closely with actual demand, cities can reduce traffic congestion, limit carbon emissions, and contribute to broader environmental goals. Ultimately, these AI-driven insights help create cleaner, more efficient, and more sustainable urban spaces, enhancing the quality of life for residents and making urban waste management systems more resilient and responsive to changing needs [3].

3.2 | Optimizing Collection Schedules

Beyond predicting waste generation patterns, the AI component in this system is pivotal in transforming waste collection scheduling by moving away from rigid, traditional routes and adapting to real-time conditions. Conventional waste collection typically operates on fixed schedules, often leading to inefficiencies, as bins may overflow or be collected prematurely, wasting resources. Integrating data from IoT sensors installed in bins throughout the urban area, the AI system continuously monitors waste levels, alerting waste management services when specific bins approach capacity or areas require more immediate attention.

Using this data-driven approach, the AI can dynamically adjust collection schedules and routes to align with real-time demand, prioritizing high-need areas while reducing unnecessary trips to bins that are only partially full. This adaptability saves time and operational resources—such as fuel and labor—and reduces wear and

tear on collection vehicles, contributing to lower maintenance costs and longer vehicle lifespans. The system's flexibility also enables more efficient use of the workforce, ensuring that personnel are deployed where they are most needed, reducing redundancy, and allowing for better planning of staff availability [4].

Moreover, this real-time responsiveness enhances public health and environmental quality. By preventing overflow and maintaining cleaner public spaces, the system minimizes the risk of attracting pests or spreading waste-related pollutants, contributing to a healthier urban environment. Ultimately, the AI-driven optimization of collection schedules translates to improved operational efficiency, reduced environmental impact, lower costs, and a more effective and reliable waste management service for residents, reinforcing a higher standard of living and urban sustainability.

3.3 | IoT Sensors for Comprehensive Data Collection

IoT sensors are strategically placed within waste bins across the city to enable seamless and efficient waste management, serving as the backbone for real-time data collection and monitoring. These sensors gather an extensive range of data, tracking not only the fill levels of each bin but also capturing critical environmental parameters, such as temperature, humidity, and even air quality. Monitoring these environmental factors is essential for optimizing waste management efforts: elevated temperatures, for instance, can hasten the decomposition process, producing strong odors that affect nearby residents, while high humidity can increase the weight and density of waste, altering its overall composition and impacting collection logistics [5].

This continuous data stream provides the AI system with an up-to-date, comprehensive view of the waste management landscape, allowing it to identify patterns and anticipate potential issues before they escalate. For example, sensors can signal when a specific area might require more frequent pickups during warmer months or after a rain event that increases humidity. The AI system can then adjust schedules, routes, and resources based on the real-time conditions within each bin, further enhancing operational precision and responsiveness [6].

Beyond basic fill levels, these sensors also improve public health and safety by proactively addressing sanitation issues. By tracking decomposition indicators, the system can flag bins that may soon pose odor or contamination risks, prompting earlier intervention to maintain cleanliness in public spaces. The environmental data collected can also provide insights into waste trends over time, enabling municipalities to make more informed decisions about waste management policies, infrastructure planning, and resource allocation.

3.4 | Centralized AI System for Data Processing

At the heart of the operation, the central AI system functions as the "brain," processing the extensive data flow from IoT sensors and transforming it into actionable insights that drive efficient, responsive waste management. This AI platform continuously analyzes patterns, comparing historical data with real-time inputs to uncover trends in waste generation, fluctuations in bin fill rates, and the effectiveness of current collection schedules. By synthesizing data from various sources—such as waste levels, environmental conditions, local events, and socio-economic trends—the AI system creates a holistic view of the city's waste management needs, allowing for data-driven decision-making.

One of the system's key capabilities is optimizing collection routes for waste trucks. Traditional waste collection routes are often static and fail to account for daily variations in waste production and other dynamic urban conditions, leading to inefficiencies. In contrast, the AI system can generate and adjust real-time collection routes, ensuring trucks take the most fuel-efficient paths. By incorporating real-time information on traffic conditions, road closures, weather events, and bin fill levels, the system can minimize travel distances and idle times, significantly reducing fuel consumption and associated emissions.

Furthermore, by forecasting waste generation peaks based on trends, such as increased waste production during festivals or seasonal events, the AI can pre-emptively adjust routes and schedules, deploying additional resources to maintain cleanliness and prevent overflow. This ability to anticipate and adapt collection efforts in real-time translates to a marked improvement in operational efficiency and resource management, reducing the frequency of unnecessary trips and extending vehicle lifespans through reduced wear and tear.

The central AI system also supports a feedback loop for continual improvement. As it gathers and learns from data over time, it refines its algorithms, enhancing its predictive accuracy and route optimization capabilities. This iterative learning process ensures that the AI system becomes more effective over time, gradually fine-tuning its recommendations to deliver even more significant fuel savings, cost reductions, and environmental benefits.

Ultimately, this AI-driven approach elevates urban waste management from reactive to proactive, delivering more reliable, efficient, and eco-friendly services to residents and contributing to the city's broader sustainability and quality-of-life goals. By coordinating resources and optimizing operations with precision, the AI system is a powerful tool for modernizing urban waste management in line with contemporary environmental and operational demands.

3.5 | Environmental and Economic Benefits

The environmental impact of this integrated AI and IoT-driven approach is substantial, offering cities a pathway toward more sustainable and eco-friendly waste management. By optimizing collection routes and schedules based on real-time data, cities can significantly reduce fuel consumption, directly lowering carbon emissions and improving air quality. This reduction in emissions is significant in densely populated urban areas, where air pollution levels often pose health risks to residents. With fewer collection trips and more efficient vehicle usage, the system helps to decrease the city's overall carbon footprint, aligning with broader environmental and climate goals [7].

In addition to environmental gains, this approach also offers considerable economic benefits. By minimizing unnecessary trips and optimizing resource allocation, municipalities can save on fuel costs, reduce vehicle maintenance expenses, and lower labor requirements without compromising the quality of service. The efficiencies gained through dynamic routing, and scheduling allow waste management departments to stretch their budgets further, freeing up resources that can be reallocated to other critical urban services or sustainability initiatives.

Moreover, by reducing collection frequency and improving bin monitoring, the system can also extend the operational lifespan of waste management equipment, reducing the need for costly replacements and repairs over time. This not only results in direct cost savings but also minimizes the waste associated with frequent equipment turnover, further enhancing the sustainability of the waste management system.

Overall, this AI-IoT system's combined economic and environmental advantages offer cities a compelling model for modern waste management. By balancing efficiency with ecological responsibility, the approach promotes a more sustainable urban environment, reduces operational costs, and supports the health and well-being of residents, ultimately contributing to a higher quality of life and a greener urban future.

3.6 | Future Directions

Overall, this study highlights the potential of combining AI and IoT in waste management and lays the groundwork for future research in this area. Urban areas can develop increasingly sophisticated waste management solutions that adapt to changing needs and promote sustainability by continuously refining algorithms, enhancing sensor technology, and exploring new data integration methods. The findings from this research can serve as a foundation for other cities aiming to modernize their waste management systems, ultimately leading to cleaner, greener urban environments [8].

4 | Proposed AI-IoT System for Waste Management

The proposed system leverages AI 's advanced decision-making capabilities alongside the IoT connectivity to create a smart waste management solution tailored to urban environments. This integration aims to enhance efficiency, reduce costs, and promote sustainability in waste management practices [9]. The primary focus areas of the system include:

4.1 | Dynamic Collection Scheduling

AI algorithms forecast waste accumulation patterns based on historical data, seasonal trends, and local events. By analyzing these variables, the system can predict when bins are likely to reach capacity, allowing for waste collection scheduling only when necessary. This dynamic approach not only ensures timely pickups but also minimizes the frequency of collections, leading to significant savings in operational costs and resource utilization [10].

4.2 | Optimized Route Planning

Another critical system component is AI-driven route planning, which identifies the most efficient paths for waste collection vehicles. The algorithms can suggest optimized routes that reduce travel distances and fuel consumption by processing real-time data from IoT sensors, including traffic conditions and bin fill levels. This efficiency lowers operational costs and decreases emissions, contributing to a greener urban environment.

4.3 | Real-Time Monitoring

Integrating IoT sensors is pivotal in continuously updating waste levels in bins throughout the city. These sensors monitor the fill levels and environmental factors such as temperature and humidity, which can affect waste decomposition. The real-time data collected ensures that waste management services are informed of current conditions, enabling timely pickups and preventing overflow. This proactive monitoring enhances the overall cleanliness and hygiene of public spaces, improving the quality of life for residents.

5 | Results

Implementing AI-IoT systems in smart cities has demonstrated promising results in enhancing urban waste management practices. Pilot studies conducted in various urban environments indicate a remarkable 20-30% reduction in operational costs attributed to optimized collection schedules and routes. By utilizing AI algorithms to forecast waste accumulation and dynamically adjust collection frequencies, municipalities can minimize unnecessary pickups, significantly saving fuel, labor, and maintenance expenses.

Moreover, integrating IoT sensors allows for real-time waste level monitoring, further enhancing waste collection operations' efficiency. This proactive approach improves service delivery and ensures that waste bins are emptied before they overflow, contributing to cleaner streets and public spaces.

In addition to cost savings, the optimized routing of waste collection vehicles significantly decreases greenhouse gas emissions. AI-IoT systems align with broader sustainability goals by reducing travel distances and minimizing the number of trips needed, promoting greener urban environments.

These preliminary outcomes underscore the potential of AI-IoT integration to improve urban waste management's efficiency and effectiveness significantly. As cities adopt these technologies, the benefits may extend further, paving the way for smarter, more sustainable waste management solutions.

6 | Discussion

Integrating AI-IoT-based optimization in waste management holds significant implications for developing smart cities. By leveraging these advanced technologies, municipalities can streamline operations, reduce costs, and enhance service delivery, ultimately fostering an environmentally friendly urban infrastructure.

Benefits

One of the primary advantages of AI-IoT integration is its ability to enhance operational efficiency. Real-time monitoring and data-driven decision-making allow for dynamic collection scheduling and optimized route planning, which can significantly reduce fuel consumption and minimize carbon emissions. Additionally, improved waste management practices contribute to cleaner public spaces, promoting community well-being and sustainability.

Moreover, this integration supports proactive resource management, enabling cities to allocate resources more effectively based on actual waste generation patterns. By minimizing unnecessary collections, cities can lower operational costs and improve overall service reliability, creating a more responsive waste management system.

Limitations

Despite these benefits, several challenges persist. Data privacy concerns are paramount, as the collection and processing of real-time data can expose sensitive information. Ensuring the security of this data is critical to maintaining public trust and compliance with regulations. Additionally, implementing AI and IoT technologies often require substantial initial investments in sensors, infrastructure, and training, which can be a barrier for many municipalities, especially in developing regions.

7 | Conclusion

In conclusion, AI-IoT optimization techniques represent a promising and viable solution for enhancing waste management in smart cities. This study highlights the critical importance of integrating AI's predictive capabilities with IoT's real-time data collection to improve operational efficiency and responsiveness in waste management systems significantly. By leveraging historical data and continuous monitoring, cities can better forecast waste generation patterns and optimize collection schedules, resulting in more effective resource allocation and reduced environmental impact.

Future research should prioritize expanding AI-IoT systems to a wider array of urban environments, taking into account the unique characteristics and challenges of different cities. This includes refining algorithms to adapt to diverse socio-economic factors, population densities, and waste generation behaviors, ensuring that the solutions are tailored to the specific needs of each community. Additionally, exploring the potential for interoperability among various smart city systems could further enhance the effectiveness of waste management initiatives.

By adopting these advanced technologies, cities can create a cleaner, more sustainable environment for their residents. This approach fosters improved waste management practices and contributes to broader goals of sustainability and livability in urban areas, ultimately creating healthier communities for future generations.

Acknowledgment

The author sincerely thanks the dedicated technical team for deploying and monitoring IoT sensors in urban pilot projects. Their expertise and commitment were essential in ensuring the successful installation and functionality of the sensors, which played a crucial role in gathering real-time data for the study.

Special thanks are also extended to the research assistants, whose invaluable contributions to data analysis and fieldwork significantly enhanced the project's outcomes. Their attention to detail and thoroughness in collecting and interpreting data have provided vital insights that underpin this research's findings. The

collaborative efforts of both the technical team and research assistants have been instrumental in advancing the goals of this project, and their hard work is deeply appreciated.

Author Contributions

Aditya Tulsyan: Conceptualization of the study, data analysis, methodology development, software integration, and manuscript preparation. The author has read and approved the published version of the manuscript.

Funding

This research received no external funding.

Data Availability

The data collected from IoT sensors during the study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- [1] Mohapatra, H., & Rath, A. K. (2020). Fault-tolerant mechanism for wireless sensor network. *IET wireless sensor systems*, 10(1), 23–30. https://doi.org/10.1049/iet-wss.2019.0106
- [2] Mohapatra, H., & Rath, A. K. (2021). An IoT based efficient multi-objective real-time smart parking system. *International journal of sensor networks*, 37(4), 219–232. https://doi.org/10.1504/IJSNET.2021.119483
- [3] Hadiyana, T., & Ji-hoon, S. (2024). AI-Driven Urban Planning: Enhancing Efficiency and Sustainability in Smart Cities. *ITEJ (information technology engineering journals)*, 9(1), 23–35. https://doi.org/10.24235/itej.v9i2.124
- [4] Gupta, M., & Kohli, A. (2006). Enterprise resource planning systems and its implications for operations function. *Technovation*, 26(5–6), 687–696. Enterprise resource planning systems and its implications for operations function
- [5] Siris, V. A., Fotiou, N., Mertzianis, A., & Polyzos, G. C. (2019). Smart application-aware IoT data collection. *Journal of reliable intelligent environments*, 5, 17–28. https://doi.org/10.1007/s40860-019-00077-y
- [6] Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor BIG Data collection--processing and analysis in smart buildings. Future generation computer systems, 82, 349–357. https://doi.org/10.1016/j.future.2017.09.082
- [7] Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... others. (1995). Environmental and economic costs of soil erosion and conservation benefits. *Science*, 267(5201), 1117–1123. https://www.science.org/doi/abs/10.1126/science.267.5201.1117
- [8] Jarzabkowski, P., & Paul Spee, A. (2009). Strategy-as-practice: A review and future directions for the field. *International journal of management reviews*, 11(1), 69–95. https://doi.org/10.1111/j.1468-2370.2008.00250.x
- [9] Lakhouit, A. (2025). Revolutionizing urban solid waste management with AI and IoT: A review of smart solutions for waste collection, sorting, and recycling. *Results in engineering*, 25, 104018.
 DOI:10.1016/j.rineng.2025.104018
- [10] McLeod, F., Erdogan, G., Cherrett, T., Bektas, T., Davies, N., Speed, C., ... Norgate, S. (2013). Dynamic collection scheduling using remote asset monitoring: Case study in the UK charity sector. *Transportation research record*, 2378(1), 65–72. https://doi.org/10.3141/2378-07